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Abstract. In this work, we motivate and present a novel compact CNN.
For the architectures that combine the adaptation in both space and
time, we describen a theoretically justified approach to interpreting the
temporal and spatial weights. We apply the proposed architecture to
Berlin BCI IV competition and our own datasets to decode electrocor-
ticogram into finger kinematics. Without feature engineering our archi-
tecture delivers similar or better decoding accuracy as compared to the
BCI competition winner. After training the network, we interpret the
solution (spatial and temporal convolution weights) and extract physio-
logically meaningful patterns.

Keywords: Limb kinematics decoding · Ecog · Machine learning ·
Convolutional neural network

1 Introduction

The algorithms used to extract relevant neural modulations are a key compo-
nent of the brain-computer interface (BCI) system. Most often, they implement
signal conditioning, feature extraction, and decoding steps. Modern machine
learning prescribes performing the two last steps simultaneously with the Deep
Neural Networks (DNN) [5]. DNNs automatically derive features in the context
of assigned regression or classification tasks. Interpretation of the computations
performed by a DNN is an important step to ensure the decoding is based on
brain activity and not artifacts only indirectly related to the neural phenomena
at hand. A proper features interpretation obtained from the first several lay-
ers of a DNN can also benefit the automated knowledge discovery process. In
case of BCI development, one way to enable this is to use specific DNN archi-
tectures that reflect prior knowledge about the neural substrate of the specific
neuromodulation used in a particular BCI.

Several promising and compact neural architectures have been developed in
the context of EEG, MEG and ECoG data analysis over recent years: EEGNet
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[4], DeepConvNet [8], LF-CNN and VAR-CNN [9]. By design the weights of
these DNNs are readily interpretable with the use of well-known approaches for
understanding the linear model weights [3]. However, to make such interpreta-
tions correct, extra care is needed.

Here we present another compact architecture, technically very similar to
LF-CNN, but motivated by somewhat different arguments than those in [9]. We
also provide a theoretically based approach to the interpretation of the temporal
and spatial convolution weights and illustrate it using a realistically simulated
and real data.

2 Methods

We assume the phenomenological setting presented in Fig. 1. The activity e(t)
of a complex set of neural populations G1 − GI , responsible for performing a
movement act, gets translated into a movement trajectory by means of some
most likely non-linear transformation H, i.e. z(t) = H(e(t)). There are also pop-
ulations A1 − AJ whose activity is not related to movement but impinges onto
the sensors. We do not have a direct access to the intensity of firing e(t) of indi-
vidual populations. Instead, we observe a K-dimensional vector of sensor signals
x(t), which is traditionally modeled as a linear mixture of local field potentials
(LFPs) s(t) formed around task relevant populations and taks-irrelevant LFPs
f(t). The task-relevant and task-irrelevant LFPs impinge onto the sensors with
forward model matrices G and A correspondingly, i.e.

x(t) = Gs(t) +Af(t) =
I∑

i=1

gisi(t) +
J∑

j=1

ajfj(t) (1)

We will refer to the task-irrelevant term recorded by our K sensors as η(t) =∑J
j=1 ajfj(t).
The LFPs are thought to be the result of activity of the nearby populations

and the characteristic frequency of LFPs is related to the population size [1]. The
envelope of LFP then approximates the firing intensity of the proximal neuronal
population. The inverse mapping is also most commonly sought in the linear
form so that the estimates of LFPs are obtained as a linear combination of the
sensor signals, i.e. ŝ(t) = WTX(t) where columns of W = [w1, . . . ,wM ] are the
spatial filters that aim to counteract the volume conduction effect and tune away
from the activity of interference sources.

Our goal is to approximate the kinematics z(t) using concurrently obtained
indirect records x(t) of activity of neural populations. In general, we do not
know G and the most straightforward approach is to learn the direct mapping
z(t) = F(x(t)).

3 Network Architecture

Based on the above considerations, we have developed a compact adaptable
architecture shown in Fig. 2. The key component of this architecture is an
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Fig. 1. Phenomenological model

adaptive envelope extractor. Interestingly, the envelope extractor, a typical mod-
ule widely used in signal processing, can be readily implemented using deep
learning primitives. It comprises several convolutions used for band-pass and
low-pass filtering and computing the absolute value. We also use non-trainable
batch-norm before activation and standardize input signals.

Fig. 2. The proposed compact DNN architecture

The envelope detectors receive spatially filtered sensor signals sm obtained
by the pointwise convolution layer, which counteracts the volume conduction
processes modeled by the forward model matrix G, see Fig. 1. Then, as men-
tioned earlier, we approximate operator H as some function of the lagged power
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of the source time series by means of a fully connected layer that mixes lagged
samples of envelopes [em(n), . . . , em(n − N + 1)] from all branches into a single
prediction of the kinematic z(n).

4 Two Regression Problems and DNN Weights
Interpretation

The proposed architecture processes data in chunks X(t) = [x(t),x(t −
1), . . .x(t − N + 1)] of some prespecified duration of N samples. In the case
when chunk size N equals to the length of the first convolution layer weight
vector hm, the processing of X(t) by the first two layers applying spatial and
temporal filtering can be simply presented as

bm(n) = wT
mX(t)hm (2)

By design ReLu(−1) non-linearity followed by the low-pass filtering per-
formed by the second convolution layer extracts envelopes of the estimates of
the underlying rhythmic LFPs.

Given the one-to-one mapping between the analytic signal and its envelope
[2] we can mentally replace the task of optimizing the parameters of the first
three layers of the architecture in Fig. 2 to predict envelopes em(t) with a simple
regression task of adjusting the spatial and temporal filter weights to obtain
envelope’s generating analytic signal bm(t), see Fig. 2. Fixing temporal weights
to their optimal value h∗

m, the optimal spatial weights can be received as a
solution to the following convex optimization problem:

w∗
m = argminwm{‖ bm(n) − wT

mX(t)h∗
m ‖22} (3)

and similarly for the temporal convolution weights:

h∗
m = argminhm{‖ bm(t) − w∗T

m X(t)hm ‖22} (4)

If we assume statistical independence of neural sources sm(t), m = 1, . . . ,M ,
then (given the regression problem (3) and forward model (1)) their topographies
can be assessed as:

gm = E{Y(t)Y(t)T }w∗
m = RY

mw∗
m, (5)

where RY
m = E{Y(t)Y(t)T } is a K×K covariance matrix of Y(t) = X(t)hm

temporally filtered multi-channel data under the assumption that xk(t), k =
1, ...,K are all zero-mean processes [3].

Then, we observe the exactly symmetric recipe for interpreting the temporal
weights. The temporal pattern can be found as:

qm = E{V(t)V(t)T }h∗
m = RV

mh∗
m (6)

where V(t) = X(t)Tw∗
m is a chunk of input signal passed through the spatial

filter and RV
m = E{V(t)V(t)T } is a branch specific N × N covariance matrix
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of spatially filtered data. Here we again assume that xk(t), k = 1, ...,K are
zero-mean processes. Commonly, we explore the frequency domain of temporal
pattern to get the sense of it, i.e. Qm(f) =

∑t=N−1
t=0 qm(t)e−j2πft, where qm(t)

is the t-th element of qm temporal pattern vector.
When the chunk of data is longer than the filter length, the equation (2) has

to be written with the convolution operation and will result not into a scalar,
but a vector. In this case using the standard Wiener filtering arguments we can
arrive at

Q∗
m(f) = P yy

m (f)H∗
m(f) (7)

as the expression for the Fourier domain representation of the LFP activity pat-
tern in the m-th branch. H∗

m(f) in equation (7) is simply the Fourier transform
of the temporal convolution weights vector h∗

m.

5 Simulated and Real Data

In order to generate the simulated data, we precisely followed the setup described
in our phenomenological diagram in Fig. 1 with the following parameters. We
generated four task-related sources with rhythmic LFPs si(t) as narrow-band
processes that resulted from filtering the Gaussian pseudo-random sequences in
30–80Hz, 80–120Hz, 120–170Hz and 170–220Hz bands using FIR filters. We
add 10 task-unrelated sources per band with activation time series located in
four bands: 40–70Hz, 90–110Hz, 130–160Hz and 180–210Hz. Kinematics z(t)
was generated as a linear combination of the four envelopes. To simulate vol-
ume conduction effect we simply randomly generated 4× 5 dimensional forward
matrix G and 40×5 dimensional forward matrix A. We simulated 15min of the
synthetic data sampled at 1000Hz and then split it into equal contiguous train
and test parts.

We used open source ECoG + kinematics data set from the BCI Competi-
tion IV collected by Kubanek et al to compare our compact DNN’s decoding
quality to linear models with pre-engineered features. The winning solution pro-
vided by Liang and Bougrain [6] have chosen as a baseline in this comparison.
Another data set is our own ECoG data CBI (the Center for Bioelectric Inter-
faces) recorded with a 64-channel microgrid during self paced flexion of each indi-
vidual finger over 1min. The ethics research committee of the National Research
University, The Higher School of Economics approved the experimental protocol
of this study.

6 Simulated Data Results

We have trained the algorithm on simulated data to decode the kinematic z(t)
and then to recover the patterns of sources that were found to be important for
this task. Figure 3 shows that the only good match with the simulated topogra-
phies based on the true underlying sources is performed by Patterns using spe-
cific to branch temporal filters. The characteristic dips in the bands that cor-
respond to the interference sources activity are demonstrated by the spectral
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characteristics of the trained temporal filtering weights. Using the estimation
theoretical approach (7), we acquire spectral patterns that closely match the
simulated ones and have dips compensation.

Fig. 3. Temporal and spatial patterns acquired for a noisy case, SNR = 1.5. See the
main text for the more detailed description.

7 Real Data Results: BCI Competition IV

In the context of processing electrophysiological data, the main advantage of
deep learning based architectures is their ability to perform automatic feature
selection in regression or classification tasks [7]. We have found that the archi-
tecture with the adaptive envelope detectors applied to Berlin BCI Competition
IV data set performs on par or better compared to the winning solution [6], see
Table 1.

8 Real Data Results: CBI Data

The following table shows the achieved accuracy for the four fingers of the two
patients achieved with the proposed architecture.

In Fig. 4 we have applied the interpretation of the obtained spatial and tem-
poral weights similarly to the way we analysed realistically simulated data. Below
we show the interpretation plots for Patient 1 index finger.



426 A. Petrosyan et al.

Fig. 4. The interpretation of network weights for the index finger decoder for patient
1 from CBI data set. Each plot line corresponds to one out of three trained decoder’s
branches. The leftmost column shows the spatial filter weights mapped into colours,
while the second and the third columns correspond to vanilla spatial patterns and
properly recovered ones. The line graphs interpret the temporal filter weights in the
Fourier domain. The filter weights are presented by the solid line, the power spectral
density (PSD) pattern of the underlying LFP is marked by the blue dash line. The
orange dash line, which is more similar to the filter weights Fourier coefficients, is the
PSD of the signal at the output of the temporal convolution block.

Table 1. Comparative performance of our model architecture (NET) and the winning
solution (Winner) of BCI IV competition Data set 4: «finger movements in ECoG ».

Subject 1
Thumb Index Middle Ring Little

Winner 0.58 0.71 0.14 0.53 0.29
NET 0.53 0.69 0.19 0.57 0.24
Subject 2

Thumb Index Middle Ring Little
Winner 0.51 0.37 0.24 0.47 0.35
NET 0.49 0.35 0.23 0.39 0.22
Subject 3

Thumb Index Middle Ring Little
Winner 0.69 0.46 0.58 0.58 0.63
NET 0.72 0.49 0.49 0.53 0.6
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Table 2. Decoding performance obtained in two CBI patients. The results show the
correlation coefficients between the actual and decoded finger trajectories for four fin-
gers in two patients.

Thumb Index Ring Little
Subject 1 0.47 0.80 0.62 0.33
Subject 2 0.74 0.54 0.77 0.80

The DNN architecture for the CBI data had three branches, which were tuned
to specific spatial-temporal pattern. We demonstrate the spatial filter weights,
vanilla and proper patterns, which were interpreted by the expressions described
in the Methods section. As you can in Fig. 4, the temporal filter weights (marked
by solid line) clearly emphasize the frequency range above 100Hz in the first
two branches and the actual spectral pattern of the source (marked by dash
line) in addition to the gamma-band content has peaks at around 11Hz (in
the first and second branches) and in the 25–50Hz range (the second branch).
It may correspond to the sensory-motor rhythm and lower components of the
gamma rhythm correspondingly. The third branch appears to be focused on a
lower frequency range. Its spatial pattern is notably more diffused than pattern,
focused on the higher frequency components in the first two branches. It is
consistent with the phenomenon that the activation frequency and size of neural
populations are mutually proportional.

9 Conclusion

We introduced a novel compact and interpretable architecture motivated by the
knowledge present in the field. We have also extended the weights interpretation
approach described earlier in [3] to the interpretation of the temporal convolu-
tion weights. We performed experiments with the proposed approach using both
simulated and real data. In simulated data set the proposed architecture was able
to almost exactly recover the underlying neuronal substrate that contributes to
the kinematic time series that it was trained to decode.

We applied the proposed architecture to the real data set of BCI IV com-
petition. Our neural network performed the decoding accuracy similar to the
winning solution of the BCI competition [6]. Unlike the traditional approach,
our DNN model does not require any feature engineering. On the contrary, after
training the structure to decode the finger kinematics, we are able to interpret
the weights as well as the extracted physiologically meaningful patterns, which
correspond to the both temporal and spatial convolution weights.
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